Procrastinating with Confidence

Near-Optimal, Anytime, Adaptive Algorithm Configuration

BRENDAN LUCIER, MicrOSOFT RESEARCH

BosBy KLEINBERG, CORNELL
Kevin LEyTon-Brown, UBC
Devon Granam, UBC

TTIC WorksHor oN AuToMATED ALGORITHM DEsigN, August 7 2019

Algorithm Configuration

Automating Algorithm Design

- Encode design choices as parameters
- Search for good configurations via learning
- Can tailor to specific contexts (input distribs)

Examples: solvers for SAT, MIPs, TSP instances, ...

Goal: find good configurations quickly
Good = fast algorithms for relevant problem instances

ParamlLS [Hutter, Hoos, Leyton-Brown, Stiitzle 2009],

SMAC [Hutter, Hoos, Leyton-Brown 2011],
Hyperband [Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar 2016], ...

Algorithm Configuration

Two parts of the algorithm configuration problem:

1. Which configurations should we test?

* Predict promising new configurations
 Bayesian methods, structural assumptions, ...

2. How should we efficiently test configurations?
e Test by running algorithms on random inputs
* How many inputs to try on each configuration?
 Goal: don’t waste time on duds

-

This work

This Work (informal):

Structured Procrastination [2017]: algorithm configuration
procedure with guaranteed worst-case running time.
* Find approx. optimal config. in time proportional to
[# configs] x [OPT running time] x [error terms].
* Nearly matches worst-case lower bounds (up to logs)

Structured Procrastination with Confidence [2019]:

Bounds can be made adaptive, better for “easier” instances
 See also: Leaps & Bounds, Caps & Runs
[Weisz, Gyorgy, Szepesvari 2018, 2019]

Anytime procedures: user stops search procedure at any

point, guarantee tightens over time.
 User does not need to pre-specify error bounds

Model

Problem instance:

N — Collection of algorithm configurations
* For now: assume |N| = n is small

[' — Distribution over input instances

R(i,j) — Runtime of configuration i on input j
R(D) = Ei-r[R(,))]

Ko — Minimum runtime: R(i,j) =k, > 0

Can cap runs at a timeout threshold 6:
R (i) = Ej.r[min{R (3,), 03]

Model

OPT = min;{R (i)}
Configuration i is e-optimal if R(i) < (1 + €)OPT
Goal (?): find an e-optimal configuration

—

1 wp. 1-—10"20

1039 otherwise

—

Example: R(4) =-

R(B) = 1000

Then R(B) < R(A), but two issues:

* Driven by rare but very bad inputs; user may prefer to cap
« Evenif R(4) = 1 always, need to run 10%° tests to check!

Model

A relaxed objective:

Config. i is (€, 6)-optimal if there is a threshold 8 such that
 Rp(i) <(1+¢€)OPT

* Pl']~l"[R(l,]) > 9] <o

Note: (¢, 0)-optimal is equivalent to e-optimal.

OPT 1_5 """""""""""""""""""

Structured Procrastination

[Kleinberg, Leyton-Brown, L 2017], [Kleinberg, Leyton-Brown, L, Graham 2019]

Theorem:
There is an anytime procedure that, when

terminated after () (OPT L) steps, returns an

€268

(€, 0)-optimal configuration with high probability.

Notes:

- Q suppresses log factors, including log of max running
time; improved by [Weisz, Gyorgy, Szepesvari 2018]

- Nearly tight: matching lower bound up to log factors

Toy

EX?comn@LIJ%tions A and B

B has deterministic runtime k&
Decide if Ais (¢, 0)-optimal in time O(k - POLY (€,0))

Idea #1: Run Aon T = 0(1/€48) inputs X
e estimate runtime of A excluding top é quantile
* Compare w/ k to determine if A is (€, d)-suboptimal

Bad example: A has deterministic runtime > k

Toy

EX?comn@LIJ%tions A and B

B has deterministic runtime k
Decide if Ais (€,0)-optimal in time O(k - POLY (¢,0))

ldea #1: Run Aon T = 0(1/€28) inputs X
Idea #2: Run A on inputs for total time O (x/e*8) ¥
* Estimate CDF of R(A4) from completed runs

fK/Z w.p. 1 —26
Bad example: R(A) = — k/25 w.p. 8
> Kk/€?5 w.p.d

Hit bad input early (~ O(1/6) runs), waste all our time there

Toy

EX?comn}lglIJ%tions A and B

B has deterministic runtime k
Decide if Ais (€,)-optimal in time O(k - POLY (€, 6))

e —
2 p. 1—-26

ldea #1: "/ P

| R(A)=) x/26 w.p. 6 25
Idea #2'\ > Kk/€28 w.p.o €°0) X
Idea #3: =
e Run Aon O(1/€%68) inputs for total time O (x/€26), but...
 Set a captime for each run (e.g., k) J

* If hit cap, pause that run and move on to the next
 Only return to arun if § fraction of runs are paused

Structured Procrastination

A time management scheme due to Stanford

philosopher John Perry [2011 Ig Nobel prize, Literature]

* Keep a set of hard tasks that you procrastinate to avoid, thereby
accomplishing other tasks.

* Eventually replace each daunting task with a new task that is even
more daunting, and so complete the former.

Structured Procrastination Algorithm Configuration:
 Maintain sets of tasks (for each config., a queue of runs)
e Start with the easiest tasks (shortest captimes)
* Procrastinate when these tasks prove daunting

(put capped runs back on the queue)

Implementation

1. Initialize a bounded-length queue Q; of (input, captime) pairs for

each configuration i.
. Instances randomly sampled from I’
. Initial captimes of K

Implementation

1. Initialize a bounded-length queue Q; of (input, captime) pairs for
each configuration i.

2. Calculate a runtime estimate for each configuration i
. Optimistic empirical average runtime: treat any capped runs in the
queue as if they finished at their captime
. Initially iy for new configurations

Implementation

1. Initialize a bounded-length queue Q; of (input, captime) pairs for
each configuration i.

2. Calculate a runtime estimate for each configuration i

3. Choose the configuration with fastest estimated runtime, then

select the (input, captime) pair from the head of its queue
. This will be the queue entry with smallest captime

Implementation

1. Initialize a bounded-length queue Q; of (input, captime) pairs for
each configuration i.

2. Calculate a runtime estimate for each configuration i

3. Choose the configuration with fastest estimated runtime, then
select the (input, captime) pair from the head of its queue

4. If the task completes, generate a new input and add it to the queue

5. Otherwise, procrastinate: double the captime and add the task back

at the tail of the queue
. We will do many other runs before coming back to this task

Implementation

1. Initialize a bounded-length queue Q; of (input, captime) pairs for
each configuration i.

2. Calculate a runtime estimate for each configuration i

3. Choose the configuration with fastest estimated runtime, then
select the (input, captime) pair from the head of its queue

4. If the task completes, generate a new input and add it to the queue

5. Otherwise, procrastinate: double the captime and add the task back
to the tail of the queue

6. If execution hasn’t been interrupted yet, goto 2

7. Returnthe configuration we spent the most time running
. More statistically stable than return config. with best current estimate

I m p | eme ntat|0 N Note: € and § only affect queue length

/

1. Initialize a bounded-length queue Q; of (input, captime) pairs for
each configuration i.

2. Calculate a runtime estimate for each configuration i

3. Choose the configuration with fastest estimated runtime, then
select the (input, captime) pair from the head of its queue

4. If the task completes, generate a new input and add it to the queue

5. Otherwise, procrastinate: double the captime and add the task back
to the tail of the queue

6. If execution hasn’t been interrupted yet, goto 2

7. Returnthe configuration we spent the most time running
. More statistically stable than return config. with best current estimate

Implementation (Anytime)

1. Initialize a bounded-length queue Q; of (input, captime) pairs for
each configuration i.

2. Calculate a runtime estimate for each configuration i

3. Choose the configuration with fastest estimated runtime, then
select the (input, captime) pair from the head of its queue

4. If the task completes, generate a new input and add it to the queue

5. Otherwise, procrastinate: double the captime and add the task back
to the tail of the queue

5.5. Grow the chosen configuration’s queue (if necessary)
6. If execution hasn’t been interrupted yet, goto 2

7. Return the configuration we spent the most time running
. More statistically stable than return config. with best current estimate

Performance Guarantee

Theorem: If the Structured Procrastination procedure is
terminated after Q (OPT - %) steps, it returns an (¢, §)-

optimal configuration with high probability (in # of steps).

Configurations /

Time T

Performance Guarantee

Theorem: If the Structured Procrastination procedure is
terminated after Q (OPT - i) steps, it returns an (¢, §)-

€26

optimal configuration with high probability (in # of steps).

Configurations

L_ (11 e = (L1
(6,6):<§,§> | /(E,5)<4y2>

Time 4T

Performance Guarantee

Theorem: If the Structured Procrastination procedure is
terminated after () (OPT - L) steps, it returns an (¢, §)-

€26

optimal configuration with high probability (in # of steps).

o (11
(€8) =333

11
Configurations (e 5)\‘ (Z'é)

!

\
\

P N
(€C>» H)>
QJ/

\(e.6)=(

Time 16T

11
8’2

)

Performance Guarantee

Theorem: If the Structured Procrastination procedure is
terminated after Q (OPT - i) steps, it returns an (¢, §)-

€26

optimal configuration with high probability (in # of steps).

Lower Bound: Suppose an algorithm configuration procedure
is guaranteed to select (¢, §)-optimal configuration with
probability at least 2. Then its worst-case expected running

time must be at least () (OPT - L)

€26

Lower Bound

Lower Bound: Suppose an algorithm configuration procedure
is guaranteed to select (¢, §)-optimal configuration with
probability at least 2. Then its worst-case expected running

time must be at least () (OPT : L)

€26
1 w.p. 1 —26 1 w.p. 1 —26(1—¢)
1/6 w.p. 26 1/6 w.p. 26(1 —¢€)

—

 Instance: n — 1 copies of A, 1 copy of B

 Ais (€,6)-suboptimal; procedure must return B
« Takes 1/€26 runs to distinguish types A and B

* need to check O(n) configs to find a B

Beating the Lower Bound

Question: Can we do better on “easier” instances?

LeapsAndBounds, CapsAndRuns [Weisz, Gyorgy, Szepesvari 2018,2019]
Improved performance on practical instances; require users to
specify € and § (not anytime). See next talk!

Structured Procrastination with Confidence (SPC):
* Maintain confidence bounds on each config’s runtime

* Bandits: optimism in the face of uncertainty
[Auer, Cosa Bianchi, Fischer 2002], [Bubeck, Cesa Bianchi 2012]

* Detect “obviously bad” configurations more quickly

* Running time matches (up to log factors) the running time of
a hypothetical “optimality verification procedure” that knows
each configuration’s runtime distribution

Structured Procrastination with Confidence

Initialize a bounded-length queue Q; of (input, captime) pairs for

each configuration i.

lower confidence bound
Calculate a untime-estimatefor each configuration i

lowest confidence bound

Choose the configuration with festest-estirratedTurtitme, then
select the (input, captime) pair from the head of its queue

If the task completes, generate a new input and add it to the queue

Otherwise, procrastinate: double the captime and add the task back
to the tail of the queue

5.5. Grow the chosen configuration’s queue (if necessary)

6.
7.

If execution hasn’t been interrupted yet, goto 2

. . ran most often
Return the configuration we

Details: Confidence Bounds

Idea: adjust empirical CDF non-uniformly; get lower bound L;.
Construction: empirical process theory [Wellner '78]

Key Lemma: if configuration i is (€, §)-suboptimal, then after
0(1/€265) executions we will have L; > OPT.

l.e., we expect to run configuration i at most 0(1/€268) times

Analysis

Key Lemma: if configuration i is (€, 6)-suboptimal, then after
0(1/€%8) executions we will have L; > OPT.

Note: can apply different (¢, §) pairs to each config!

Example:
Config A is optimal

COnﬁg Bis (1/10) 1/100)-5Ub0ptima|
Config Cis (1/5,1/5)-suboptimal

* Cis “easier” to exclude; can be quickly verified suboptimal
* SPC will run configuration C fewer times

Performance Guarantee

For any € and &, and each configuration i, define

1/€2%6 if i is (¢, §)-optimal

Vi(e,8) = — - =2 &
’ min 1/€46 :
g5:iis (é,g)—suboptimal{ / } otherwise

~——

Intuition: V; (€, &) is min. # runs that an omniscient verifier
needs to convince a skeptic that i is/isn’t (€, §)-optimal.

Theorem: If Structured Procrastination with Confidence is

terminated after Q(OPT - ¥;cn Vi(€,8)) steps, it returns an
(€, 8)-optimal configuration with high probability.

Evaluation (1)

Are practical instances “easy” (variation in suboptimality)?

Publicly-available data from [Hutter Xu Hoos Leyton-Brown 2014]:
SPEAR SAT solver, SWV problem instances [Babi¢, Hu 2007].

SPEAR-SWV: 6 = 0.001 SPEAR-SWV: 6 = 0.010 SPEAR-SWV: § = 0.100 SPEAR-SWV: 6 = 0.500
1.0 1.0 1.0 1.0
g
9
0.8 0.8 0.8+ 0.8
3
2
‘0.6 0.6 0.6+ 0.6
S
S04 0.4 0.4 0.4
8
£
50.2 0.2 0.21 0.2
o
a
0.0 0.0 0.0 0.0
1072 10° 10 10 10° 10° 102 10° 102 10° 10° 10® 102 10° 102 10* 10° 10® 1072 10° 10> 10 10° 10°

Evaluation (I1)

Does this result in faster practical performance?

Data from [Weisz, Gyorgy, Szepesvari 2018]:
* 972 minisat configurations
e 20118 nontrivial CNFuzzDD SAT instances

e Fixe =01 track time to find (. N -ontimal confisiiration

1.0 ~— Structured Procrastination
* LeapsAndBounds

Structured Procrastination
with Confidence

0.8+

Proof Technique: simulate
execution time as if we had
run using Structured

0.6

<

. . 0.4} . ';‘.?3;4
Procrastlnatlon, to .
obtain (¢, §) guarantee g :

\\'.‘. l&\q\x
0.0 - ' i :
10° 10! 10° 10° 10*

Time to find (¢,6)-optimal solution (CPU days)
(e=0.1)

Extension: many configurations

So far, we’ve assumed |N| = n is small.
Typical case: N is very large (or infinite); Q(n) is infeasible

Relaxed Benchmark: a config. within the top y-performing
quantile, over all configurations in N.
OPT,: y fraction of configurations have R(i) < OPT,

Config. i is (¢, 0, y)-optimal if there is a threshold 6 such that
« Ro()<(1+ E)OPTy
. Prj~p[R(i,j) >0l <6

Extension: many configurations

Config. i is (€, 0,y)-optimal if there is a threshold 8 such that
« Ro(i)<(1+ E)OPTy
* PI'JNF[R(l,]) > 0] <o

Idea 1: Sample O(1/y) configurations from N, then run SPC

on the resulting set of configurations.
* Best sampled configurationis likely to have R (i) < OPT,

Idea 2: Gradually increase the number of configurations in

the sample, as SPC runs.
* Leadsto an anytime guarantee with respect to y

Extension: many configurations

Theorem: If the Structured Procrastination procedure is

terminated after () (OPTy 2oy

(€, 6, y)-optimal configuration with high prob. (in # of steps).

) steps, it identifies an

Lower Bound: Suppose an algorithm configuration procedure
is guaranteed to select (¢, d, y)-optimal configuration with
probability at least 2. Then its worst-case expected running

time must be at least () (OPTy 626)/)

Note: a corresponding result for SPC; replace 1/€%8 with
[expected time to verify suboptimality of random config].

Summary

Structured Procrastination: approach to algorithm configuration.

* Procrastinates on potentially hard inputs rather than solving them
to completion when first encountered

Anytime procedure, guaranteed to find an approx. optimal
algorithm configuration in nearly optimal worst-case time.

Extension: adaptively better performance on “easy” instances

E.g., presence of bad configurations that can be rejected quickly

Future directions:

« Combining with Bayesian optimization, other methods
 Thorough empirical evaluations, comparisons

Thanks!

